Bidirectional Semi-supervised Learning with Graphs
نویسندگان
چکیده
We present a machine learning task, which we call bidirectional semi-supervised learning, where label-only samples are given as well as labeled and unlabeled samples. A label-only sample contains the label information of the sample but not the feature information. Then, we propose a simple and effective graph-based method for bidirectional semisupervised learning in multi-label classification. The proposed method assumes that correlated classes are likely to have the same labels among the similar samples. First, we construct a graph that represents similarities between samples using labeled and unlabeled samples in the same way with graph-based semi-supervised methods. Second, we construct another graph using labeled and label-only samples by connecting classes that are likely to co-occur, which represents correlations between classes. Then, we estimate labels of unlabeled samples by propagating labels over these two graphs. We can find a closed-form global solution for the label propagation by using matrix algebra. We demonstrate the effectiveness of the proposed method over supervised and semi-supervised learning methods with experiments using synthetic and multi-label text data sets.
منابع مشابه
Bidirectional Label Propagation over Graphs
Graph-Based label propagation algorithms are popular in the state-of-the-art semi-supervised learning research. The key idea underlying this algorithmic family is to enforce labeling consistency between any two examples with a positive similarity. However, negative similarities or dissimilarities are equivalently valuable in practice. To this end, we simultaneously leverage similarities and dis...
متن کاملALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching
We investigate the non-identifiability issues associated with bidirectional adversarial training for joint distribution matching. Within a framework of conditional entropy, we propose both adversarial and non-adversarial approaches to learn desirable matched joint distributions for unsupervised and supervised tasks. We unify a broad family of adversarial models as joint distribution matching pr...
متن کاملTowards Understanding Adversarial Learning for Joint Distribution Matching
We investigate the non-identifiability issues associated with bidirectional adversarial training for joint distribution matching. Within a framework of conditional entropy, we propose both adversarial and non-adversarial approaches to learn desirable matched joint distributions for unsupervised and supervised tasks. We unify a broad family of adversarial models as joint distribution matching pr...
متن کاملSemi-supervised Learning over Heterogeneous Information Networks by Ensemble of Meta-graph Guided Random Walks
Heterogeneous information network (HIN) is a general representation of many real world data. The difference between HIN and traditional homogeneous network is that the nodes and edges in HIN are with types. In many applications, we need to consider the types to make the decision more semantically meaningful. For annotationexpensive applications, a natural way is to consider semi-supervised lear...
متن کاملThe game theoretic p-Laplacian and semi-supervised learning with few labels
We study the game theoretic p-Laplacian for semi-supervised learning on graphs, and show that it is well-posed in the limit of finite labeled data and infinite unlabeled data. In particular, we show that the continuum limit of graph-based semi-supervised learning with the game theoretic p-Laplacian is a weighted version of the continuous p-Laplace equation. Our proof uses the viscosity solution...
متن کامل